Abstract

In this paper we present an algorithm to generate all minimal 3-vertex connected spanning subgraphs of an undirected graph with n vertices and m edges in incremental polynomial time, i.e., for every K we can generate K (or all) minimal 3-vertex connected spanning subgraphs of a given graph in O ( K 2 log ( K ) m 2 + K 2 m 3 ) time, where n and m are the number of vertices and edges of the input graph, respectively. This is an improvement over what was previously available and is the same as the best known running time for generating 2-vertex connected spanning subgraphs. Our result is obtained by applying the decomposition theory of 2-vertex connected graphs to the graphs obtained from minimal 3-vertex connected graphs by removing a single edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.