Abstract
Transcranial focused ultrasound stimulation (tFUS) is an effective noninvasive treatment modality for brain disorders with high clinical potential. However, the therapeutic effects of ultrasound neuromodulation are not widely explored due to limitations in preclinical systems. The current preclinical studies are head-fixed, anesthesia-dependent, and acute, limiting clinical translatability. Here, this work reports a general-purpose ultrasound neuromodulation system for chronic, closed-loop preclinical studies in freely behaving rodents. This work uses microelectromechanical systems (MEMS) technology to design and fabricate a small and lightweight transducer capable of artifact-free stimulation and simultaneous neural recording. Using the general-purpose system, it can be observed that state-dependent ultrasound neuromodulation of the prefrontal cortex increases rapid eye movement (REM) sleep and protects spatial working memory to REMsleep deprivation. The system will allow explorative studies in brain disease therapeutics and neuromodulation using ultrasound stimulation for widespread clinical adoption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.