Abstract

Small noble metal nanoclusters can be formed in situ by direct reduction and stabilization of a metal precursor by biomolecules such as proteins. Considering the diversity in amino acid composition of proteins, and hence their reductive ability, a general method for synthesis of gold nanoclusters using proteins is presented here. A range of proteins (bovine serum albumin, fibrinogen, α-lactalbumin, lysozyme, cytochrome c, myoglobin, β-lactoglobulin and α-chymotrypsin) have been studied, based on size, isoelectric point, flexibility and 3-dimensional structure. Results show protein-gold nanoconstructs with complex protein-specific photophysical properties. The effect on the 3-dimensional conformation of the proteins upon formation of gold nanoclusters and/or nanoparticles within the protein structure is also shown to be highly protein-dependent. A general mechanism for the formation of protein-gold nanoconstructs is proposed, based on charge density matching, yielding a high local concentration of the metal precursor on the protein structure which in turn can nucleate, grow and be stabilized by amino acid residues in the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call