Abstract
In 1971 McClelland obtained lower and upper bounds for the total π-electron energy. We now formulate the generalized version of these bounds, applicable to the energy-like expression EX = Σn i =1 |xi − x̅|, where x1,x2, . . . ,xn are any real numbers, and x̅ is their arithmetic mean. In particular, if x1,x2, . . . ,xn are the eigenvalues of the adjacency, Laplacian, or distance matrix of some graph G, then EX is the graph energy, Laplacian energy, or distance energy, respectively, of G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.