Abstract

The absence of recognizable, low energy quantum gravitational effects requires that some asymptotic series expansion be wonderfully accurate, but the correct expansion might involve logarithms or fractional powers of Newton’s constant. That would explain why conventional perturbation theory shows uncontrollable ultraviolet divergences. We explore this possibility in the context of the mass of a charged, gravitating scalar. The classical limit of this system was solved exactly in 1960 by Arnowitt, Deser and Misner, and their solution does exhibit nonanalytic dependence on Newton’s constant. We derive an exact functional integral representation for the mass of the quantum field theoretic system, and then develop an alternate expansion for it based on a correct implementation of the method of stationary phase. The new expansion entails adding an infinite class of new diagrams to each order and subtracting them from higher orders. The zeroth-order term of the new expansion has the physical interpretation of a first quantized Klein–Gordon scalar which forms a bound state in the gravitational and electromagnetic potentials sourced by its own probability current. We show that such bound states exist and we obtain numerical results for their masses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.