Abstract

The mutational equations of Aubin extend ordinary differential equations to metric spaces (with compact balls). In first-order geometric evolutions, however, the topological boundary need not be continuous in the sense of Painleve–Kuratowski. So this paper suggests a generalization of Aubin’s mutational equations that extends classical notions of dynamical systems and functional analysis beyond the traditional border of vector spaces: Distribution-like solutions are introduced in a set just supplied with a countable family of (possibly non-symmetric) distance functions. Moreover their existence is proved by means of Euler approximations and a form of “weak” sequential compactness (although no continuous linear forms are available beyond topological vector spaces). This general framework is applied to a first-order geometric example, i.e. compact subsets of ℝ N evolving according to the nonlocal properties of both the current set and its proximal normal cones. Here neither regularity assumptions about the boundaries nor the inclusion principle are required. In particular, we specify sufficient conditions for the uniqueness of these solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.