Abstract

We review the notion of a [Formula: see text], an algebraic structure introduced recently by López, Préville-Ratelle and Ronco during their work on the splitting of associativity via [Formula: see text]-Dyck paths, and we also introduce Rota[Formula: see text]-algebras: both structures can be considered as generalizations of dendriform structures. We obtain examples of Dyck[Formula: see text]-algebras in terms of planar rooted binary trees equipped with a particular type of Rota–Baxter operator, and we present examples of Rotam-algebras using left averaging morphisms. As an application, we observe that the structures presented here allow us to introduce quite naturally a “non-associative version” of the Kadomtsev–Petviashvili hierarchy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.