Abstract

We identify a generic construction of cryptosystems based on the subset sum problem and characterize the required homomorphic map. Using the homomorphism from the Damgard-Jurik cryptosystem, we then eliminate the need for a discrete logarithm oracle in the key generation step of the Okamoto et al. scheme to provide a practical cryptosystem based on the subset sum problem. We also analyze the security of our cryptosystem and show that with proper parameter choices, it is computationally secure against lattice-based attacks. Finally, we present a practical application of this system for RFID security and privacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.