Abstract
Action recognition in surveillance video makes our life safer by detecting the criminal events or predicting violent emergencies. However, efficient action recognition is not free of difficulty. First, there are so many action classes in daily life that we cannot pre-define all possible action classes beforehand. Moreover, it is very hard to collect real-word videos for certain particular actions such as steal and street fight due to legal restrictions and privacy protection. These challenges make existing data-driven recognition methods insufficient to attain desired performance. Zero-shot learning is potential to be applied to solve these issues since it can perform classification without positive example. Nevertheless, current zero-shot learning algorithms have been studied under the unreasonable setting where seen classes are absent during the testing phase. Motivated by this, we study the task of action recognition in surveillance video under a more realistic generalized zero-shot setting, where testing data contains both seen and unseen classes. To our best knowledge, this is one of the first works to study video action recognition under the generalized zero-shot setting. We firstly perform extensive empirical studies on several existing zero-shot leaning approaches under this new setting on a web-scale video data. Our experimental results demonstrate that, under the generalize setting, typical zero-shot learning methods are no longer effective for the dataset we applied. Then, we propose to deploy generalized zero-shot learning which transfers the knowledge of Web video to detect the anomalous actions in surveillance videos. To verify the effectiveness of methods, we further construct a new surveillance video dataset consisting of nine action classes related to the public safety situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.