Abstract

Let M be a discrete-time normal martingale that has the chaotic representation property. Then, from the space of square integrable functionals of M, one can construct generalized functionals of M. In this paper, by using a type of weights, we introduce a class of continuous linear operators acting on generalized functionals of M, which we call generalized weighted number (GWN) operators. We prove that GWN operators can be represented in terms of generalized annihilation and creation operators (acting on generalized functionals of M). We also examine commutation relations between a GWN operator and a generalized annihilation (or creation) operator, and obtain several formulas expressing such commutation relations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.