Abstract

The wavelet transform (WT) and linear canonical transform (LCT) have been shown to be powerful tool for optics and signal processing. In this paper, firstly, we introduce a novel time-frequency transformation tool coined the generalized wavelet transform (GWT), based on the idea of the LCT and WT. Then, we derive some fundamental results of this transform, including its basis properties, inner product theorem and convolution theorem, inverse formula and admissibility condition. Further, we also discuss the time-fractional-frequency resolution of the GWT. The GWT is capable of representing signals in the time-fractional-frequency plane. Last, some potential applications of the GWT are also presented to show the advantage of the theory. The GWT can circumvent the limitations of the WT and the LCT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.