Abstract

In testing of hypothesis, the robustness of the tests is an important concern. Generally, the maximum likelihood-based tests are most efficient under standard regularity conditions, but they are highly non-robust even under small deviations from the assumed conditions. In this paper, we have proposed generalized Wald-type tests based on minimum density power divergence estimators for parametric hypotheses. This method avoids the use of nonparametric density estimation and the bandwidth selection. The trade-off between efficiency and robustness is controlled by a tuning parameter β. The asymptotic distributions of the test statistics are chi-square with appropriate degrees of freedom. The performance of the proposed tests is explored through simulations and real data analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.