Abstract
In testing of hypothesis, the robustness of the tests is an important concern. Generally, the maximum likelihood-based tests are most efficient under standard regularity conditions, but they are highly non-robust even under small deviations from the assumed conditions. In this paper, we have proposed generalized Wald-type tests based on minimum density power divergence estimators for parametric hypotheses. This method avoids the use of nonparametric density estimation and the bandwidth selection. The trade-off between efficiency and robustness is controlled by a tuning parameter β. The asymptotic distributions of the test statistics are chi-square with appropriate degrees of freedom. The performance of the proposed tests is explored through simulations and real data analysis.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.