Abstract
Pairwise learning corresponds to the supervised learning setting where the goal is to make predictions for pairs of objects. Prominent applications include predicting drug-target or protein-protein interactions, or customer-product preferences. In this work, we present a comprehensive review of pairwise kernels, that have been proposed for incorporating prior knowledge about the relationship between the objects. Specifically, we consider the standard, symmetric and anti-symmetric Kronecker product kernels, metric-learning, Cartesian, ranking, as well as linear, polynomial and Gaussian kernels. Recently, a O(nm+nq) time generalized vec trick algorithm, where n, m, and q denote the number of pairs, drugs and targets, was introduced for training kernel methods with the Kronecker product kernel. This was a significant improvement over previous O(n^2) training methods, since in most real-world applications m,q<< n. In this work we show how all the reviewed kernels can be expressed as sums of Kronecker products, allowing the use of generalized vec trick for speeding up their computation. In the experiments, we demonstrate how the introduced approach allows scaling pairwise kernels to much larger data sets than previously feasible, and provide an extensive comparison of the kernels on a number of biological interaction prediction tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.