Abstract
This article extends and generalizes the variance‐ratio (VR) statistic by employing an estimator of the asymptotic covariance matrix of the sample autocorrelations. The estimator is consistent under the null for general classes of innovations exhibiting statistical dependence including exponential generalized autoregressive conditional heteroskedasticity and non‐martingale difference sequence processes. Monte Carlo experiments show that our generalized test statistics have good finite sample size and superior power properties to other recently developed VR versions. In an application to two major US stock indices, our new generalized VR tests provide stronger rejections of the null than do competing VR tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.