Abstract
Multiattribute auction mechanisms generally either remain agnostic about traders' preferences, or presume highly restrictive forms, such as full additivity. Real preferences often exhibit dependencies among attributes, yet may possess some structure that can be usefully exploited to streamline communication and simplify operation of a multiattribute auction. We develop such a structure using the theory of measurable value functions, a cardinal utility representation based on an underlying order over preference differences. A set of local conditional independence relations over such differences supports a generalized additive preference representation, which decomposes utility across overlapping clusters of related attributes. We introduce an iterative auction mechanism that maintains prices on local clusters of attributes rather than the full space of joint configurations. When traders' preferencesare consistent with the auction's generalized additive structure, the mechanism produces approximately optimal allocations, atapproximate VCG prices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.