Abstract

Crabtree et al. recently reported the microwave spectrum of nitrosyl-O-hydroxide (trans-NOOH), an isomer of nitrous acid, and found that this molecule has the longest O-O bond ever observed: 1.9149 Å ± 0.0005 Å. This is in marked contrast to the structure of the valence isoelectronic trans-NSOH molecule, which has a normal NS-OH bond length and strength. Generalized valence bond calculations show that the long bond in trans-NOOH is the result of a weak through-pair interaction that singlet couples the spins of the electrons in singly occupied orbitals on the hydroxyl radical and nitrogen atom, an interaction that is enhanced by the intervening lone pair of the oxygen atom in NO. The NS-OH bond is the result of the formation of a stable recoupled pair bond dyad, which accounts for both its length and strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.