Abstract

Non-orthogonal multiple access (NOMA) is regarded as a promising technology to provide high spectral efficiency and support massive connectivity in 5G systems. In most existing NOMA user grouping approaches, users are grouped into disjoint groups, which may lead to a waste of power resources within each NOMA group. Motivated by this, in this paper we propose a novel generalized user grouping (GuG) concept for NOMA from an overlapping perspective, which allows each user to participate in multiple groups but subject to individual maximum power constraint. In order to achieve effective GuG and maximize the system sum rate, we formulate a joint power control and GuG optimization problem. Then, we address this problem by exploiting the overlapping coalition formation (OCF) game framework, and we further propose an OCF-based algorithm in which each user can be self-organized into a desirable overlapping coalition structure. Simulation results verify the efficiency of GuG in NOMA systems and indicate that compared with traditional NOMA user grouping schemes, our proposed OCF-based GuG NOMA scheme achieves significant performance gains in terms of system sum rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call