Abstract

This theoretical investigation aims to highlight the unsteady freely convective fractional motion of a Jeffery fluid near an infinite vertical plate. The additional effects of ramped velocity condition, Newtonian heating, magnetohydrodynamics (MHD), and nonlinear radiative heat flux are also examined. A system of fractional order partial differential equations is established by choosing Caputo-Fabrizio fractional derivative as a foundation. Laplace transformation followed by an adequate choice of unit-less parameters is executed to solve the subsequent ordinary differential equations. Stehfest’s and Zakian’s numerical algorithms are invoked to find and justify the inverse Laplace transform of velocity and shear stress. Temperature and velocity gradients are evaluated at the wall to effectively probe the rate of heat transfer and shear stress. In this regard, numerical computations of Nusselt number and shear stress for several inputs of connected parameters are tabulated. Furthermore, graphical elucidations of velocity and temperature profiles are provided to observe the rise and fall subjected to variation in several parameters. Additionally, the velocity profile for both ramped boundary condition and constant boundary condition is analyzed to get a deep insight into the physical phenomenon of the considered problem. Finally, a comparative analysis between Jeffery fluid and second grade fluid is carried out for both factional and ordinary cases, and it is determined that Jeffery fluids exhibit rapid motion in both cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call