Abstract
The color gauge-invariant transverse momentum dependent (TMD) quark correlators contain process dependent gauge links in the bilocal matrix elements. In this paper, we split these process dependent correlators into universal TMD correlators, which in turn can be parametrized in universal TMD distribution functions. The process dependence is contained in gluonic pole factors, of which the value is determined by the gauge link. The operator structures of the universal TMD correlators are identified using transverse moments. In this paper, specific results for double transverse weighting of quark TMDs are given. In particular, we show that for a spin 1/2 target one has three universal time-reversal even leading `pretzelocity distributions', two of which involve double gluonic pole matrix elements and come with process dependent gluonic pole factors. We generalize the results for single and double weighting to TMD correlators of any specific rank, illustrating it for unpolarized, spin 1/2 and spin 1 targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review D
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.