Abstract

Generalized uncertainty principles are able to serve as useful descriptions of some of the phenomenology of quantum gravity effects, providing an intuitive grasp on non-trivial space-time structures such as a fundamental discreteness of space, a universal bandlimit or an irreducible extendedness of elementary particles. In this article, uncertainty relations are derived by a moment expansion of states for quantum systems with a discrete coordinate, and correspondingly a periodic momentum. Corrections to standard uncertainty relations are found, with some similarities but also key differences to what is often assumed in this context. The relations provided can be applied to discrete models of matter or space-time, including loop quantum cosmology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call