Abstract

In this paper we consider generalized uncertainty principle (GUP) effects in higher dimensional black hole spacetimes via a nonlocal gravity approach. We study three possible modifications of momentum space measure emerging from GUP, including the original Kempf-Mangano-Mann (KMM) proposal. By following the KMM model we derive a family of black hole spacetimes. The case of five spacetime dimensions is a special one. We found an exact black hole solution with a Barriola-Vilenkin monopole at the origin. This object turns out to be the end point of the black hole evaporation. Interestingly for smaller masses, we found a “naked monopole” rather than a generic naked singularity. We also show that the Carr-Lake-Casadio-Scardigli proposal leads to mild modifications of spacetime metrics with respect to the Schwarzschild-Tangherlini solution. Finally, by demanding the same degree of convergence in the ultraviolet regime for any spacetime dimension, we derive a family of black hole solutions that fulfill the gravity self-completeness paradigm. The evaporation of such black holes is characterized by a fluctuating luminosity, which we dub a lighthouse effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.