Abstract

Three–dimensional (3D) similarity datum transformation is extensively applied to transform coordinates from GNSS-based datum to a local coordinate system. Recently, some total least squares (TLS) algorithms have been successfully developed to solve the universal 3D similarity transformation problem (probably with big rotation angles and an arbitrary scale ratio). However, their procedures of the parameter estimation and new point (non-common point) transformation were implemented separately, and the statistical correlation which often exists between the common and new points in the original coordinate system was not considered. In this contribution, a generalized total least squares prediction (GTLSP) algorithm, which implements the parameter estimation and new point transformation synthetically, is proposed. All of the random errors in the original and target coordinates, and their variance–covariance information will be considered. The 3D transformation model in this case is abstracted as a kind of generalized errors–in–variables (EIV) model and the equation for new point transformation is incorporated into the functional model as well. Then the iterative solution is derived based on the Gauss–Newton approach of nonlinear least squares. The performance of GTLSP algorithm is verified in terms of a simulated experiment, and the results show that GTLSP algorithm can improve the statistical accuracy of the transformed coordinates compared with the existing TLS algorithms for 3D similarity transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.