Abstract

Systems of identical particles with equal charge are studied under a special type of confinement. These classical particles are free to move inside some convex region S and on the boundary of it Ω (the Sd−1−sphere, in our case). We shall show how particles arrange themselves under the sole action of the Coulomb repulsion in many dimensions in the usual Euclidean space, therefore generalizing the so called Thomson problem to many dimensions. Also, we explore how the problem varies when non-Euclidean geometries are considered. We shall see that optimal configurations in all cases possess a high degree of symmetry, regardless of the concomitant dimension or geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.