Abstract

The superposition of two coherent beams in different states of elliptic polarisation is discussed in a general manner. If A and B represent the states of polarisation of the given beams on the Poincare sphere, and C that of the resultant beam, the result is simply expressed in terms of the sides,a, b, c of the spherical triangle ABC. The intensity I of the resultant beam is given by: I=I1 + I2 +2√I1+I2cos½Ccosδ; the extent of mutual interference thus varies from a maximum for identically polarised beams (c = 0), to zero for oppositely polarised beams (c = π ). The state of polarisation C of the resultant beam is located by sin2 ½a = (I1/I) sin2 ½c and sin2 ½b = (I2/I) sin2 ½c. The 'phase difference' δ is equal to the supplement of half the area of the triangle C'BA (where C' is the point diametrically opposite to C). These results also apply to the converse problem of the decomposition of a polarised beam into two others. The interference of two coherent beams after resolution into the same state of elliptic polarisation by an elliptic analyser or compensator is discussed; as also the interference (direct,and after resolution by an analyser) of n coherent pencils in different states of polarisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.