Abstract

A self-consistent theory of a free-electron laser is developed by the kinetic approach, using the method of characteristics in helical wiggler and guide magnetic fields. The detailed relativistic particle trajectories obtained in wiggler and guide magnetic fields are used in linearized Vlasov–Maxwell equations having variations in perpendicular and parallel momenta to obtain the perturbed distribution function in terms of perturbed electric and magnetic fields deviating from the vector potential approach. The perturbed distribution function thus obtained, having variations in perpendicular and parallel momenta for an arbitrary distribution function, is used to obtain current, conductivity and dielectric tensors. The full dispersion relation (FDR) and Compton dispersion relation (CDR) have been obtained. The dispersion diagram has been obtained and the interaction of the negative longitudinal space charge with the electromagnetic wave has been shown. The temporal growth rates obtained from the full dispersion relation and Compton dispersion relation for the tenuous cold relativistic beam in microwave region have been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.