Abstract

A simplified method for determining the individual mode components of the strain energy release rate of free-edge delaminations in composite laminates is proposed. Interlaminar stresses are evaluated as an interface moment and interface shear forces obtained from equilibrium equations of stress resultants at the interface between the adjacent layers. The deformation of edge-delaminated laminate is calculated by using a generalized quasi-three dimensional classical laminated plate theory developed by the authors. The analysis provides closed-form expressions for the Mode-I, Mode-II and Mode-III component of the strain energy release rate by combining the deformation of the edge-delaminated laminate with the interface moment and the interface shear forces. The presented method is compared with existing method suggested by Li for the asymmetry laminate. Comparison of the results with a finite element analysis using the virtual crack closure technique shows good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.