Abstract

This paper addresses a class of generalized tensor complementarity problems (GTCPs) over a polyhedral cone. As a new generalization of the well-studied tensor complementarity problems (TCPs) in the literature, we first show the nonemptiness of the solution set of GTCPs when the involved tensor is cone ER. Then, we study bounds of solutions, and in addition to deriving a Hölderian local error bound of the problem under consideration. Finally, we reformulate GTCPs over a polyhedral cone as a system of nonlinear equations, which is helpful to employ the Levenberg–Marquardt algorithm for finding a solution of the problem. Some preliminary numerical results show that such an algorithm is efficient for GTCPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.