Abstract

We present a generic technique, automated by computer-algebra systems and available as open-source software \cite{scuff-em}, for efficient numerical evaluation of a large family of singular and nonsingular 4-dimensional integrals over triangle-product domains, such as those arising in the boundary-element method (BEM) of computational electromagnetism. To date, practical implementation of BEM solvers has often required the aggregation of multiple disparate integral-evaluation schemes to treat all of the distinct types of integrals needed for a given BEM formulation; in contrast, our technique allows many different types of integrals to be handled by the \emph{same} algorithm and the same code implementation. Our method is a significant generalization of the Taylor--Duffy approach \cite{Taylor2003,Duffy1982}, which was originally presented for just a single type of integrand; in addition to generalizing this technique to a broad class of integrands, we also achieve a significant improvement in its efficiency by showing how the \emph{dimension} of the final numerical integral may often be reduced by one. In particular, if $n$ is the number of common vertices between the two triangles, in many cases we can reduce the dimension of the integral from $4-n$ to $3-n$, obtaining a closed-form analytical result for $n=3$ (the common-triangle case).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.