Abstract
The approximate solvability of a generalized system for relaxed cocoercive nonlinear variational inequality in Hilbert spaces is studied, based on the convergence of projection methods. The results presented in this paper extend and improve the main results of [R.U. Verma, Generalized system for relaxed cocoercive variational inequalities and its projection methods, J. Optim. Theory Appl. 121 (1) (2004) 203–210; R.U. Verma, Generalized class of partial relaxed monotonicity and its connections, Adv. Nonlinear Var. Inequal. 7 (2) (2004) 155–164; R.U. Verma, General convergence analysis for two-step projection methods and applications to variational problems, Appl. Math. Lett. 18 (11) (2005) 1286–1292; N.H. Xiu, J.Z. Zhang, Local convergence analysis of projection type algorithms: Unified approach, J. Optim. Theory Appl. 115 (2002) 211–230; H. Nie, Z. Liu, K.H. Kim, S.M. Kang, A system of nonlinear variational inequalities involving strongly monotone and pseudocontractive mappings, Adv. Nonlinear Var. Inequal. 6 (2) (2003) 91–99].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.