Abstract

We synthesized uniform-sized nanorods of transition metal phosphides from the thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump. MnP nanorods with dimensions of 8 nm x 16 nm and 6 nm x 22 nm sized were synthesized by the thermal decomposition of Mn-TOP complex, which was prepared from the reaction of Mn(2)(CO)(10) and tri-n-octylphosphine (TOP), using a syringe pump with constant injection rates of 10 and 20 mL/h, respectively. When Co-TOP complex, which was prepared from the reaction of cobalt acetylacetonate and TOP, was reacted in a mixture solvent composed of octyl ether and hexadecylamine at 300 degrees C using a syringe pump, uniform 2.5 nm x 20 nm sized Co(2)P nanorods were generated. When cobaltocene was employed as a precursor, uniform Co(2)P nanorods with 5 nm x 15 nm were obtained. When Fe-TOP complex was added to trioctylphosphine oxide (TOPO) at 360 degrees C using a syringe pump and then allowed to age at 360 degrees C for 30 min, uniform-sized FeP nanorods with an average dimension of 12 nm x 500 nm were produced. Nickel phosphide (Ni(2)P) nanorods with 4 nm x 8 nm were synthesized successfully by thermally decomposing the Ni-TOP complex, which was synthesized by reacting acetylacetonate [Ni(acac)(2)] and TOP. We measured the magnetic properties of these nanorods, and some of the nanorods exhibited different magnetic characteristics compared to the bulk counterparts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call