Abstract
Surfaces in Euclidean three-space with constant ratio of mean curvature to Gauss curvature arise naturally as the parallel surfaces to minimal surfaces. They might possess singularities which occur naturally as focal points of minimal surfaces. We study geometric properties and the singularities of such surfaces, prove some global results about them, and provide a Bjorling formula to construct such surfaces with prescribed point or curve singularities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.