Abstract
Let K be a compact set in a Euclidean space and let d be a metric on K which is continuous with respect to the usual topology. The generalized energy integral I(μ) = ff d(x, y) dμ(x) dμ{y) is investigated as μ is allowed to range over the lamily of signed Borel measures of total mass one concentrated on K. A trick of integral geometry is used to define a class of metrics d, including many standard ones, possessing a number of pleasing properties related to the functional /.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.