Abstract
Two-beam states obtained by partial photon-number-resolving detection in one beam of a multi-mode twin beam are experimentally investigated using an intensified CCD camera. In these states, sub-Poissonian photon-number distributions in one beam are accompanied by sub-shot-noise fluctuations in the photon-number difference of both beams. Multi-mode character of the twin beam implying the beam nearly Poissonian statistics is critical for reaching sub-Poissonian photon-number distributions, which contrasts with the use of a two-mode squeezed vacuum state. Relative intensities of both nonclassical effects as they depend on the generation conditions are investigated both theoretically and experimentally using photon-number distributions of these fields. Fano factor, noise-reduction parameter, local and global nonclassicality depths, degree of photon-number coherence, mutual entropy as a non-Gaussianity quantifier, and negative quasi-distributions of integrated intensities are used to characterize these fields. Spatial photon-pair correlations as means for improving the field properties are employed. These states are appealing for quantum metrology and imaging including the virtual-state entangled-photon spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.