Abstract

In this paper we define a non-unitary displacement operator, which by acting on the vacuum state of the pseudo harmonic oscillator (PHO), generates new class of generalized coherent states (GCSs). An interesting feature of this approach is that, contrary to the Klauder-Perelomov and Barut-Girardello approaches, it does not require the existence of dynamical symmetries associated with the system under consideration. These states admit a resolution of the identity through positive definite measures on the complex plane. We have shown that the realization of these states for different values of the deformation parameters leads to the well-known Klauder-Perelomov and Barut-Girardello CSs associated with the $su(1,1)$ Lie algebra. This is why we call them the generalized $su(1,1)$ CSs for the PHO. Finally, study of some statistical characters such as squeezing, anti-bunching effect and sub-Poissonian statistics reveals that the constructed GCSs have indeed nonclassical features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.