Abstract
Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA is proposed to effectively deal with various types of interactions among latent variables. In the proposed method, a latent interaction is defined as a product of interacting latent variables. As a result, this method does not require the construction of additional indicators for latent interactions. Moreover, it can easily accommodate both exogenous and endogenous latent interactions. An alternating least-squares algorithm is developed to minimize a single optimization criterion for parameter estimation. A Monte Carlo simulation study is conducted to investigate the parameter recovery capability of the proposed method. An application is also presented to demonstrate the empirical usefulness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.