Abstract

Fluorescent RNA-based biosensors are useful tools for real-time detection of molecules in living cells. These biosensors typically consist of a chromophore-binding aptamer and a target-binding aptamer, whereby the chromophore-binding aptamer is destabilized until a target is captured, which causes a conformational change to permit chromophore binding and an increase in fluorescence. The target-binding region is typically fabricated using known riboswitch motifs, which are already known to have target specificity and undergo structural changes upon binding. However, known riboswitches only exist for a limited number of molecules, significantly constraining biosensor design. To overcome this challenge, we designed a framework for producing mammalian cell-compatible biosensors using aptamers selected from a large random library by Capture-SELEX. As a proof-of-concept, we generated and characterized a fluorescent RNA biosensor against L-dopa, the precursor of several neurotransmitters. Overall, we suggest that this approach will have utility for generating RNA biosensors that can reliably detect custom targets in mammalian cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.