Abstract
For two families of beta distributions, we show that the generalized Stieltjes transforms of their elements may be written as elementary functions (powers and fractions) of the Stieltjes transform of the Wigner distribution. In particular, we retrieve the examples given by the author in a previous paper and relating generalized Stieltjes transforms of special beta distributions to powers of (ordinary) Stieltjes ones. We also provide further examples of similar relations which are motivated by the representation theory of symmetric groups. Remarkably, the power of the Stieltjes transform of the symmetric Bernoulli distribution is a generalized Stietljes transform of a probability distribution if and only if the power is greater than one. As to the free Poisson distribution, it corresponds to the product of two independent Beta distributions in $[0,1]$ while another example of Beta distributions in $[-1,1]$ is found and is related with the Shrinkage process. We close the exposition by considering the generalized Stieltjes transform of a linear functional related with Humbert polynomials and generalizing the symmetric Beta distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.