Abstract

Using the thin film model of black hole, the thermal radiation laws of the Barriola-Vilenkin black hole are studied. We obtained the result that the thermal radiation of the black hole always satisfies the generalized Stenfan-Boltzmann law. The derived generalized Stenfan-Boltzmann coefficient is no longer a constant. When the cut-off distance and the thin film thickness are both fixed, it is a proportional coefficient related to the space-time metric near the event horizon and the average radial effusion velocity of the radiation particles in the thin film. The radiation energy flux of the Dirac field of the Barriola-Vilenkin black hole is proportional to the average radial effusion velocity of the radiation particles in the thin film, and inversely proportional to the square of the black hole mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call