Abstract
We present a multiparameter generalization of the Stäckel transform (the latter is also known as the coupling-constant metamorphosis) and show that under certain conditions this generalized Stäckel transform preserves Liouville integrability, noncommutative integrability and superintegrability. The corresponding transformation for the equations of motion proves to be nothing but a reciprocal transformation of a special form, and we investigate the properties of this reciprocal transformation. Finally, we show that the Hamiltonians of the systems possessing separation curves of apparently very different form can be related through a suitably chosen generalized Stäckel transform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.