Abstract

Eliahou and Kervaire defined splittable monomial ideals and provided a relationship between the Betti numbers of the more complicated ideal in terms of the less complicated pieces. We extend the concept of splittable monomial ideals showing that an ideal which was not splittable according to the original definition is splittable in this more general definition. Further, we provide a generalized version of the result concerning the relationship between the Betti numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.