Abstract
We extend the speed limit of a distance between two states evolving by different generators for quantum systems [K. Suzuki and K. Takahashi, Phys. Rev. Res. 2, 032016(R) (2020)] to the classical stochastic processes described by the master equation. We demonstrate that the trace distance between arbitrary evolving states is bounded from above by using a geometrical metric. The geometrical bound reduces to the Fisher information metric for the distance between the time-evolved state and the initial state. We compare the bound in relaxation and annealing processes with a different type of bound known for nonequilibrium thermodynamical systems. For dynamical processes such as annealing and pumping processes, the distance between the time-evolved state and the instantaneous stationary state becomes a proper choice and the bound is represented by the Fisher information metric of the stationary state. The metric is related to the counterdiabatic term defined from the time dependence of the stationary state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.