Abstract

Let A be an element of a complex Banach algebra with identitI. The ordinary spectrum of A, sp(A), consists of those points z in the complex plane such that A — zI has no inverse in . If Q is any other element of , we define spQ(A), the spectrum of A relative to Q, or Q-spectrum of A, as those points z such that has no inverse in . Thus if Q = 0 the Q-spectrum of A is the same as the ordinary spectrum of A.The generalized notion of spectrum, spQ(A), retains many of the properties of the ordinary spectrum, particularly when A and Q commute and the ordinary spectrum of Q does not meet the unit circle. Under these conditions the Q-spectrum of A is a nonempty compact subset of the plane, and if both sp(A) and sp(Q) are finite (or countable), so is spQ(A).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.