Abstract
This study proposes new generalized spectral tests for multivariate martingale difference hypotheses, specifically geared toward high-dimensionality scenarios where the dimension of the time series is comparable or even larger than the sample size in practice. We develop an asymptotic theory and a valid wild bootstrapping procedure for the new test statistics, in which the dimension of the time series is fixed. We demonstrate that a bias-reduced version of the test statistics effectively addresses the high-dimensionality concerns. Comprehensive Monte Carlo simulations reveal that the bias-reduced statistic performs substantially better than its competitors. The application to testing the efficient market hypothesis on the U.S. stock market illustrates the usefulness of our proposal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.