Abstract

In this paper, we investigate the performance of generalized spatial modulation (GSM) in indoor wireless visible light communication (VLC) systems. GSM uses $N_t$ light emitting diodes (LED), but activates only $N_a$ of them at a given time. Spatial modulation and spatial multiplexing are special cases of GSM with $N_{a}=1$ and $N_{a}=N_t$, respectively. We first derive an analytical upper bound on the bit error rate (BER) for maximum likelihood (ML) detection of GSM in VLC systems. Analysis and simulation results show that the derived upper bound is very tight at medium to high signal-to-noise ratios (SNR). The channel gains and channel correlations influence the GSM performance such that the best BER is achieved at an optimum LED spacing. Also, for a fixed transmission efficiency, the performance of GSM in VLC improves as the half-power semi-angle of the LEDs is decreased. We then compare the performance of GSM in VLC systems with those of other MIMO schemes such as spatial multiplexing (SMP), space shift keying (SSK), generalized space shift keying (GSSK), and spatial modulation (SM). Analysis and simulation results show that GSM in VLC outperforms the other considered MIMO schemes at moderate to high SNRs; for example, for 8 bits per channel use, GSM outperforms SMP and GSSK by about 21 dB, and SM by about 10 dB at $10^{-4}$ BER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.