Abstract

This paper introduces a new class of spatio-temporal models for measurements belonging to the exponential family of distributions. In this new class, the spatial and temporal components are conditionally independently modeled via a latent factor analysis structure for the (canonical) transformation of the measurements mean function. The factor loadings matrix is responsible for modeling spatial variation, while the common factors are responsible for modeling the temporal variation. One of the main advantages of our model with spatially structured loadings is the possibility of detecting similar regions associated to distinct dynamic factors. We also show that the new class outperforms a large class of spatial-temporal models that are commonly used in the literature. Posterior inference for fixed parameters and dynamic latent factors is performed via a custom tailored Markov chain Monte Carlo scheme for multivariate dynamic systems that combines extended Kalman filter-based Metropolis–Hastings proposal densities with block-sampling schemes. Factor model uncertainty is also fully addressed by a reversible jump Markov chain Monte Carlo algorithm designed to learn about the number of common factors. Three applications, two based on synthetic Gamma and Bernoulli data and one based on real Bernoulli data, are presented in order to illustrate the flexibility and generality of the new class of models, as well as to discuss features of the proposed MCMC algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.