Abstract

In this article semilinear hyperbolic first order systems in two variables are considered, whose nonlinearity satisfies a global Lipschitz condition. It is shown that these systems admit unique global solutions in the Colombeau algebraG(ℝ2). In particular, this provides unique generalized solutions for arbitrary distributions as initial data. The solution inG(ℝ2) is shown to be consistent with the locally integrable or the distributional solutions, when they exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.