Abstract
We show in this paper that stochastic processes associated with nonlinear parabolic equations and systems allow one to construct a probabilistic representation of a generalized solution to the Cauchy problem. We also show that in some cases the derived representation can be used to construct a solution to the Cauchy problem for a hyperbolic system via the vanishing viscosity method. Bibliography: 12 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.