Abstract

A theorem on the existence of solutions and their continuous dependence upon initial boundary conditions is proved. The method of bicharacteristics is used to transform the mixed problem into a system of integral functional equations of the Volterra type. The existence of solutions of this system is proved by the method of successive approximations using theorems on integral inequalities. Classical solutions of integral functional equations lead to generalized solutions of the original problem. Differential equations with deviated variables and differential integral problems can be obtained from the general model by specializing given operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.