Abstract

SummaryThis paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions . Numerical integration technique is first used to approximate the polar form of as a sum of exponentials. This approximation is then used to derive a closed‐form solution to the related SEP integral. Due to the exponential nature of the approximation, solution to the integral is expressed in terms of moment generating function (MGF) of a fading distribution. Therefore, the solution to integral exists for all fading distributions which have well‐defined MGF. The mathematical complexity of the proposed solution is directly proportional to the complexity of MGF expression. For most of the fading models, the corresponding MGF involves power or exponential functions, which guarantees algebraic simplicity of the proposed solution. Further, this generalized solution is used to evaluate the SEP of various modulation schemes over different fading channels. Various computer simulations run in MATLAB for wide range of scenarios confirm the accuracy of the proposed approximation and solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.