Abstract

We discuss major differences between electric and magnetic excitations in nuclei appearing in self-consistent calculations based on Skyrme energy-density functionals (EDFs). For this we calculate collective low- and high-lying electric and magnetic excitations in $^{208}\mathrm{Pb}$ within a self-consistent Skyrme EDF approach using the random-phase approximation (RPA) and a more sophisticated particle-hole plus phonon-coupling model, coined the time-blocking approximation (TBA). Tools of analysis are Landau-Migdal parameters for bulk properties and the RPA and TBA results for finite nuclei. We show that the interplay between the effective mass and the effective particle-hole interaction, well known in the Landau-Migdal theory, renders the final results rather independent of the effective mass by virtue of the ``backflow effect.'' It explains the success of self-consistent calculations of electric transitions in such approaches. This effect, however, is absent in the magnetic case and leads to higher fluctuations in the results. It calls for further developments of the Skyrme functional in the spin channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.